Effects of MgF2 anti-reflection coating on optical losses in metal halide perovskite solar cells

Author:

Jung Sung-Kwang,Park Keonwoo,Lee Do-Kyoung,Lee Joo-Hong,Ahn Hyojung,Lee Jin-WookORCID

Abstract

Abstract The importance of light management for perovskite solar cells (PSCs) has recently been emphasized because their power conversion efficiency approaches their theoretical thermodynamic limits. Among optical strategies, anti-reflection (AR) coating is the most widely used method to reduce reflectance loss and thus increase light-harvesting efficiency. Monolayer MgF2 is a well-known AR material because of its optimal refractive index, simple fabrication process, and physical and chemical durabilities. Nevertheless, quantitative estimates of the improvement achieved by the MgF2 AR layer are lacking. In this study, we conducted theoretical and experimental evaluations to assess the AR effect of MgF2 on the performance of formamidinium lead-triiodide PSCs. A sinusoidal tendency to enhance the short-circuit current density (J SC) was observed depending on the thickness, which was attributed to the interference of the incident light. A transfer matrix method-based simulation was conducted to calculate the optical losses, demonstrating the critical impact of reflectance loss on the J SC improvement. The predicted J SCs values, depending on the perovskite thickness and the incident angle, are also presented. The combined use of experimental and theoretical approaches offers notable advantages, including accurate interpretation of photocurrent generation, detailed optical analysis of the experimental results, and device performance predictions under unexplored conditions.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3