Abstract
Abstract
We present the electrical properties of zinc phthalocyanine covalently conjugated to cellulose nanocrystals (CNC@ZnPc). Thin films of CNC@ZnPc sandwiched between two gold electrodes showed pronounced hysteresis in their current–voltage characteristics. The layered metal–organic–metal sandwich devices exhibit distinct high and low conductive states when bias is applied, which can be used to store information. Density functional theory results confirmed wave function overlap between CNC and ZnPc in CNC@ZnPc, and helped visualize the lowest (lowest unoccupied molecular orbital) and highest molecular orbitals (highest occupied molecular orbital) in CNC@ZnPc. These results pave the way forward for all-organic electronic devices based on low cost, earth abundant CNCs and metallophthalocyanines.
Funder
National Research Council Canada
Natural Sciences and Engineering Research Council of Canada
Canada First Research Excellence Fund
FPInnovations
Canada Foundation for Innovation
Alberta Innovates
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献