Author:
Peng Fei,Su Yuanyuan,Zhong Yiling,He Yao
Abstract
Abstract
Semiconductor II-VI quantum dots (QDs), as high-performance fluorescent biological probes, have garnered significant attention due to their superior optical properties. To enable QDs for wide-ranging bioapplications, concerns about their in vitro behavior need to be fully addressed. Herein, for the first time, cellular behaviors of aqueous synthesized-QDs (aqQDs), whose maximum emission wavelength (λ
emission) covers the visible to near-infrared spectral window, are systematically investigated. Our results demonstrate that three different sized aqQDs feature distinct cellular distributions, i.e. aqQD530 (aqQDs whose λ
emission is 530 nm) and aqQD620 (aqQDs whose λ
emission is 620 nm) mainly distribute in the cytoplasm and nucleus, while aqQD730 (aqQDs whose λ
emission is 730 nm) mainly accumulates in the cytoplasm. Most significantly, the phenomenon that cellular self-repair ability is dependent on diameters of aqQDs is revealed for the first time. In particular, small-sized QDs (e.g. aqQD530 and aqQD620) severely deteriorate cellular self-repair ability, leading to an irreversible decrease in cell viability. In striking contrast, large-sized QDs (e.g. aqQD730) have little effect on cellular self-repair ability, and the cell viability is restored after removal of aqQD730 from the culture medium. Our results provide invaluable information for QD-relevant biosafety analysis, as well as suggest available guidance for the design of biocompatible QDs for wide utilization in biological and biomedical studies.
Funder
NSFC
National Basic Research Program of China
Six Talent Peaks Project of Jiangsu Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献