Homologous post-treatment strategy enabling phase-pure α-FAPbI3 films

Author:

Ye Yaqi,Xiao Lingbo,Li Lutao,Xu Xiaoli,Zhao Jie,Wang Chen,Lu Zheng,Jiang Wen,Li Jiating,Sun YinghuiORCID,Zou GuifuORCID

Abstract

Abstract Formamidinium lead triiodide (FAPbI3) is considered as the prospective light-absorbing layer on account of the close-to-ideal bandgap of the α-phase, wide optical absorption spectrum and good thermal stability. Therefore, how to realize δ to α-phase transition to obtain phase-pure α-FAPbI3 without additives is important for FAPbI3 perovskite films. Herein, a homologous post-treatment strategy (HPTS) without additives is proposed to prepare FAPbI3 films with pure α-phase. The strategy is processed along with dissolution and reconstruction process during the annealing. The FAPbI3 film has tensile strain with the substrate, and the lattice keeps tensile, and the film maintains in an α/δ hybrid phase. The HPTS process releases the tensile strain between the lattice and the substrate. The process of strain release realizes the phase transition from δ to α-phase during this process. This strategy can accelerate the transformation from hexagonal δ-FAPbI3 to cubic α-FAPbI3 at 120 °C. As a result, the acquired α-FAPbI3 films exhibit better film quality in optical and electrical properties, accordingly achieving device efficiency of 19.34% and enhanced stability. This work explores an effective approach to obtain additive-free and phase-pure α-FAPbI3 films through a HPTS to fabricate uniform high-performance α-FAPbI3 perovskite solar cells.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3