In-situ electrochemical polymerization of aniline on flexible conductive substrates for supercapacitors and non-enzymatic ascorbic acid sensors

Author:

Liu HuiORCID,Tao You,Sun Huijuan,Wang Tian-XiongORCID,Peng Zhisheng,Jin Jiyou,Wang Zhongpu,Peng Kang,Wei Haonan,Li Yong Jun,Han Bao-HangORCID,Sun Lianfeng

Abstract

Abstract Polyaniline, as a kind of conductive polymer with commercial application prospects, is still under researches in its synthesis and applications. In this work, polyaniline was fabricated on flexible substrates including carbon cloths and polyethylene naphthalate by in situ electropolymerization method. The synthesized flexible electrodes were characterized by scanning electron microscopy, High resolution transmission electron microscope, atomic force microscope, Fourier transform infrared, x-ray diffraction, and x-ray photoelectron spectroscopy. Owing to the conductivity and the reversible redox property, the polyaniline/carbon cloth electrodes show excellent properties such as decent supercapacitor performance and good detection capability toward ascorbic acid. As supercapacitors, the electrodes exhibit a specific capacitance as high as 776 F g–1 at a current density of 1 A g–1 and a long cycle life of 20 000 times in the three-electrode system. As ascorbic acid sensors, the flexible electrodes demonstrate stable response to ascorbic acid in the range of 1–3000 μM with an outstanding sensitivity (4228 μA mM–1 cm–2), low detection limit (1 μM), and a fast response time. This work holds promise for high-performance and low-cost flexible electrodes for both supercapacitors and non-enzymatic ascorbic acid sensors, and may inspire inventions of self-powered electrochemical sensor.

Funder

The GBA National Institute for Nanotechnology Innovation, Guangdong, China

Major Nanoprojects of Ministry of Science and Technology of China

Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3