Abstract
Abstract
A substrate for surface-enhanced Raman spectroscopy (SERS) in a sandwich configuration, noble metal/analyte/defect-rich metal oxide, is demonstrated for the detection of methylene blue(MB). The sandwich structure (Ag/MB/SUMoO3) is fabricated by physical vapour deposition of Ag nanoparticles over the MB analytes that are adsorbed on sea urchin MoO3 (SUMoO3). SUMoO3 are grown on a glass substrate by chemical bath deposition. The morphology of the fabricated sandwich structures shows serrated spikes of MoO3 from the core region decorated with strings of silver nanoparticles. The silver-decoration and the oxygen defects of SUMoO3 promote absorption in the visible region and facilitate charge transfer between MB and SUMoO3, which are beneficial for achieving superior SERS properties in this configuration compared to the contribution from individual components alone. The sandwich structure is able to detect the MB molecule up to 100 nM with an enhancement factor of 8.1 × 106. The relative standard deviation of SERS intensity for the 1618 cm−1 peak of MB across the substrate is 29.2%. The configuration offers stability to SERS substrate under ambient conditions. The combined effect of charge transfer, surface plasmon resonance, and MB resonance results in the improved SERS detection of MB molecules with the Ag/MB/SUMoO3 sandwich structure.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献