ZnO nanorods anchored on CNTs incorporating carbon cloth flexible electrode as a highly sensitive electrochemical sensor

Author:

Shi Fengna,Li Jingfang,Chen Cheng,Wang FangORCID,Chen Naipin,Xu Ziqi,Wang Jiajun

Abstract

Abstract Monitoring glucose, uric acid (UA) and hydrogen peroxide (H2O2) concentration has emerged as a critical health care issue to prevent acute complications and to minimize the hazard of long-term complications. In this paper, a novel non-enzyme electrochemical sensor was proposed with nanorod-like zinc oxide anchored on carbon nanotubes using a direct precipitation method and then decorated onto carbon cloth (ZnO/CNTs/CC). The ZnO/CNTs composite was characterized by x-ray photoelectron spectroscopy (XPS), Raman spectrum, TEM microscope and electrochemistry. The sensing of UA, glucose and H2O2 individually or simultaneously was done on a ZnO/CNTs/CC electrode, and the superior performance lies in its wide linear range, low detection limit and high selectivity, which is attributed to the synergistic effect of (a) the good electrocatalytic activity of ZnO nanorods, and (b) the large surface area with high conductivity offered by CNTs. Moreover, the ZnO/CNTs/CC electrode showed good reproducibility, stability and selectivity. Importantly, the developed sensor platform has been successfully applied to probe glucose, UA and H2O2 in human serum with satisfactory recoveries. Our proposed approach is simple in fabrication and operation, which provides a straightforward assay for the reliable and cost-effective determination of glucose, UA and H2O2 in clinical diagnosis and biomedical applications.

Funder

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3