Ni and Co synergy in bimetallic nanowires for the electrochemical detection of hydrogen peroxide

Author:

Hussain Muhammad,Nisar Amjad,Qian Lizhi,Karim Shafqat,Khan Maaz,Liu Yanguo,Sun Hongyu,Ahmad MashkoorORCID

Abstract

Abstract The development of a highly sensitive and selective non-enzymatic electrode catalyst for the detection of a target molecule was remained a great challenge. In this regard, bimetallic nanowires (BMNWs) are considered as promising electrode material for their fascinating physical/chemical properties superior to a single system. In this article, nickel cobalt (Ni x –Co) BMNWs with tunable stoichiometry were prepared by a template assisted electrodeposition method and their catalytic performance was investigated for the detection of hydrogen peroxide (H2O2). It has been found that Ni–Co (0.5:1) BMNWs/PC electrode exhibits superior non-enzymatic sensing ability toward H2O2 detection with a high selectivity. The electrode shows fast response within ∼3 s and an excellent reproducible sensitivity of 2211.4 μAmM−1 cm−2, which is the best compared to the individual Ni, Co, Ni–Co (0.3:1) BMNWs and previously reported electrodes. In addition, the electrode shows a linear response in the wide concentration range from 0.005 mM to 9 mM, low detection limit of 0.5 μM (S/N = 3.2) and a relatively long-term storage (50 d). Moreover, the sensor reveals excellent results for H2O2 detection in the real samples. The enhanced sensitivity of the Ni–Co (0.5:1) BMNWs based electrode may be due to the stable structure and synergy of Ni and Co. The results demonstrate that the catalytic activity of the electrode binary catalyst towards H2O2 detection can be improved by adjusting the Ni/Co ratio in BMNWs. The excellent performance of the electrode suggests that Ni–Co BMNWs are promising candidate for the construction of cost-effective electrochemical sensors for medical and industrial applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3