Abstract
Abstract
Memristors with the outstanding advantages are beneficial for neuromorphic computing and next-generation storage. Realizing various resistive switching behaviors in monolayer memristors is essential for understanding the device physics and fabricating fully memristive devices. In this paper, a simple and feasible method was proposed to achieve the digital and analog resistive switching in Cu/AlOx/Ag memristors by using ozone and water precursors in atomic layer deposition. According to the characterization results of surface topography, Raman spectrum and electrical measurement, the transition between the abrupt and gradual resistive switching was ascribed to the migration and diffusion of active electrode metal ions in the sparser, rougher and more amorphous AlOx dielectric films. The key features of biological synapses including long-term potentiation/depression, paired-pulse facilitation and learning-experience behaviors were emulated in the analog monolayer memristors. This study makes an important step towards the development of the sophisticated, multi-functional, and large-scale integrated neuromorphic devices and systems.
Funder
Joint fund for Intelligent Computing of Shandong Natural Science Foundation
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
China Key Research and Development Program
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献