Abstract
Abstract
Designing and fabricating economically viable, high active and stable electrocatalysts play an important role for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Crystal phase is the crucial factor that governs the electrochemical property and electrocatalytic reaction pathways. Here, a one-step nickel foam derived sulfidation method was presented to synthesize self-supported NiS2 and Ni3S2. The crystal phase-dependent chemical properties related to electrocatalytic behavior were evaluated by a series of advanced characterization and density functional theory calculations. Overall, the self-supported Ni3S2 shows high electrochemical activity towards both HER and OER in alkaline conditions, which afford the current density of 10 mA cm−2 with overpotentials of 245 mV for OER and 123 mV for HER, respectively. When employed the self-supported Ni3S2 as the bifunctional electrocatalysts for overall water splitting, the entire device provides the current density of 10 mA cm−2 at 1.61 V. These results indicate that the electrocatalytic properties can be exert greater improved by controlling the crystal phase, offering the prospect for advanced materials design and development.
Funder
National Natural Science Foundation of China
the Innovation/Entrepreneurship Program of Jiangsu Province
Sino-German Cooperation Group Project
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献