Abstract
Abstract
To explore low-cost, high-efficiency, and noble-metal-free catalysts for electrocatalytic water splitting in both acidic and alkaline media, the metal-metal carbide Janus hierarchical structure comprising Mo and β-Mo2C embedded on a carbon layer (Mo/β-Mo2C)@C is synthesized by a hydrothermal reaction and subsequent low-temperature magnesium thermic process. Systematic characterization by XRD, XPS, Raman scattering, and SEM/TEM reveals the successful formation of metallic Mo and β-Mo2C nanoparticles. The synthesized (Mo/β-Mo2C)@C has a large specific surface area and boasts highly efficient hydrogen evolution reaction activity including low overpotentials of 152 and 171 mV at a current density of 10 mA cm−2 and small Tafel slopes of 51.7 and 63.5 mV dec−1 in acidic and alkaline media, respectively. In addition, the catalyst shows outstanding stability for 48 h in both acidic and alkaline media. The excellent catalytic activity originates from more active sites and greater electron conductivity bestowed by the carbon layer, which also improves the long-term stability in both acidic and alkaline solutions.
Funder
Scientific Research Foundation of Shantou University
Guangdong Basic and Applied Basic Research Foundation
2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant
City University of Hong Kong Donation Research Grant
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献