From multi-segmented to core/shell nanorods: morphology evolution in Fe–Au nanorods by tuning fabrication conditions

Author:

Khurshid HafsaORCID,Yoosuf Rahana,Zafar Humaira,Attanayake Supun B,Azeem MuhammadORCID,Issa Bashar AORCID,Anjum Dalaver H,Srikanth HariharanORCID

Abstract

Abstract Aiming to obtain hybrid magneto-plasmonic nanostructures, we have developed multisegmented and core/shell structured Fe–Au nanorods using template assisted electrochemical deposition. A facile method of tuning the growth pattern of multisegmented nanorods into core/shell structured is demonstrated. With a precise control of current density and deposition time, a brick-stacked wire like growth led to the formation of hollow nanotubes that could be further tuned to multilayered hollow nanotubes and core/shell structured nanorods. TEM imaging and STEM-EELS technique were used to explore the morphology, microstructure and the distribution of Au and Fe in the nanorods. The easy magnetization direction was found to be perpendicular to the nanorods’ growth direction in the segmented nanorods. On the other hand, core/shell nanorods exhibited isotropic behavior. Our findings provide deeper insights into the fabrication of hybrid nanorods and the opportunity to tune the fabrication method to vary their morphology accordingly. Such studies will benefit design of hybrid nanorods with specific morphologies and physical properties and hence their integration into sensing, spintronics and other potential biomedical and technological applications.

Funder

the Research Institute of Sciences and Engineering, University of Sharjah

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3