Core–shell structured monodisperse carbon-rich SiO1.31C1.46H0.81 ceramic spheres as anodes for high-capacity lithium-ion batteries

Author:

Zeng Ying,He Zhiyan,Li MingqiORCID

Abstract

Abstract SiOC ceramic material is a promising anode material for lithium-ion batteries. However, due to its intrinsically low electronic conductivity, it often suffers from a much lower specific capacity than the theoretical value, poor rate capability and serious potential hysteresis. In this paper, we report a core–shell structured monodisperse carbon-rich SiO1.31C1.46H0.81 submicron ceramic sphere with a free carbon content of 13.7 wt%, which is synthesized by directly annealing polysiloxane spheres derived from vinyltrimethoxysilane without adding external carbon resources. The SiO1.31C1.46H0.81 sphere has a unique microstructure, the core of which is organically assembled by large amounts of SiO1.31C1.46H0.81 primary particles of less than 20 nm and coated by a shell of 20–50 nm. As anodes for lithium-ion batteries, it presents much higher reversible capacity, initial Coulomb efficiency (ICE) and rate performance than the SiOC-based ceramic materials reported in the literature to date. At 100 mA g−1, its first reversible capacity and ICE reach ∼1107 mAh g−1 and 78.2%, respectively. At 1600 mA g−1, its stable discharge capacity is still as high as 610 mAh g−1. The excellent electrochemical performance is attributed to the moderate composition, spherical morphology and unique microstructure of the synthesized material.

Funder

Sichuan Science and Technology Program

Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3