Novel nitrogen plasma doping on CdS/GO compounds and their photocatalytic assessment

Author:

Ramos-Corona A,Rangel RORCID,Lara J,Trejo-Tzab R,Bartolo P,Alvarado-Gil J J

Abstract

Abstract Nitrogen-doping of cadmium sulfide nanostructured compounds was carried out under a nitrogen plasma source to produce CdS-N compounds. Once prepared, it was supported on graphene oxide sheets for producing CdS-N/GO photocatalysts, which were tested in the degradation of lignin and methylene blue (MB) molecules. Photocatalytic reactions were carried out under UV and visible (vis) energy irradiation. To provide insight on the catalytic behavior the CdS, CdS-N, GO, and CdS-N/GO compounds were characterized using different techniques including x-ray diffraction, scanning electron microscopy, Raman, and UV–vis diffuse reflectance spectroscopy. X-ray photoelectron spectroscopy allowed determining the chemical composition in samples. It was observed an outstanding performance in photocatalytic activity tests, attributed to the extended response towards the visible light regime, and the synergistic effect between CdS-N and GO particles. The catalytic activity tests, reveal that the CdS-N/GO compound achieved over 90% lignin degradation and 100% of MB degradation. In addition, a remarkable performance is observed in the CdS-N/GO compound which exhibited stability after performing several reaction cycles.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3