Abstract
Abstract
The development of interpretable structure/property relationships is a cornerstone of nanoscience, but can be challenging when the structural diversity and complexity exceeds our ability to characterise it. This is often the case for imperfect, disordered and amorphous nanoparticles, where even the nomenclature can be unspecific. Disordered platinum nanoparticles have exhibited superior performance for some reactions, which makes a systematic way of describing them highly desirable. In this study we have used a diverse set of disorder platinum nanoparticles and machine learning to identify the pure and representative structures based on their similarity in 121 dimensions. We identify two prototypes that are representative of separable classes, and seven archetypes that are the pure structures on the convex hull with which all other possibilities can be described. Together these nine nanoparticles can explain all of the variance in the set, and can be described as either single crystal, twinned, spherical or branched; with or without roughened surfaces. This forms a robust sub-set of platinum nanoparticle upon which to base further work, and provides a theoretical basis for discussing structure/property relationships of platinum nanoparticles that are not geometrically ideal.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献