Origin of proton induced fluorescence quenching of colloidal carbon dots: reshaping of Schrödinger wavefunctions and huge red shift of transition energy

Author:

Zhang Chengyu,Dai Dejian,Zhao Guo,Lu Wei,Fan JiyangORCID

Abstract

Abstract The fluorescence quenching by protons is a universal phenomenon but the mechanism remains unclear. Here, we take the fluorescent amide-terminated carbon dots as a prototype to study the proton fluorescence quenching mechanism by using both experiments and time-dependent density functional theory calculations. The study reveals that when an approached proton is captured by the weakly negatively charged fluorophore group of the colloidal carbon dot, it will substantially change the electron wavefunctions owing to the strong proton–electron interaction, and this leads to highly diminished energy gap and resultant fluorescence quenching in the visible spectral region. The protons generated by hydrolysis of various types of metal ions also exhibit fruitful fluorescence quenching and the quenching efficiency is roughly proportional to the hydrolysis constant of the metal ion. This fluorescence quenching mechanism is quite distinct from the conventional ones involving electron or energy transfer.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3