Ns-pulsewidth pulsed power supply by regulating electrical parameters for AFM nano EDM of nm-removal-resolution

Author:

Quan Ran,Tong HaoORCID,Li YongORCID

Abstract

Abstract Nano electro discharge machining (nano EDM), as a frontier processing method in the research stage of exploration, has an important application prospect in the machining of metal and alloy materials for achieving nanoscale removal resolution. A pulsed power supply used in nano EDM is expected to limit a single pulse energy to nJ order of magnitude for improving the removal resolution of single pulsed discharge even to nanoscale. One developing direction is to decrease pulsewidth of the pulsed power supply. Conventional pulsed power supplies hardly output a single pulse and continuous pulses with nanosecond (ns) pulsewidth, resulting in too large single pulsed energy of μJ order of magnitude usually. In this research, a novel pulsed power supply is designed for realizing the ns-pulsewidth with controllable pulsewidth and peak voltage. The key novelty lies in a cascaded circuit with two triodes working in the state of ultra-fast avalanche conduction, where pF capacitors are applied to adjust the pulsewidth and pulsed energy precisely. Performance tests verified that a single pulse of 5 ns pulsewidth or continuous pulses up to 9 MHz can be outputted. Furthermore, nano EDM experiments of single pulsed discharge are carried out under the conditions of nanometer (nm) discharge gap and nm-tip tool electrode based on an atomic force microscope (AFM) system. The special results are achieved: a single pulsed energy can reach down to 1.75 nJ by outputting a pulsewidth of 10 ns, and a nano-EDM crater is only about 182 nm in diameter with regular shape and little recasting. Those results verify the possibility of AFM-tip-based nano EDM for machining nanostructures.

Funder

Independent Research Project of State Key Laboratory of Tribology of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of GPR Transmitting Pulse Signal Based on FPGA;2022 41st Chinese Control Conference (CCC);2022-07-25

2. Design and Test of Pulsed Power Supply;Servo Scanning 3D Micro Electro Discharge Machining;2022-06-22

3. Development of a micro-electrochemical machining nanosecond pulse power supply;Review of Scientific Instruments;2022-02-01

4. Conductive Domain-Wall Temperature Sensors of LiNbO3 Ferroelectric Single-Crystal Thin Films;IEEE Electron Device Letters;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3