Abstract
Abstract
While supercapacitors have been widely studied as the next generation of energy storage devices, to develop active electrode materials for enhancing device performance is still challenging. Herein, we fabricated asymmetric supercapacitors based on NiZn-Layered double hydroxide (LDH) @NiCoSe2 hierarchical nanostructures as electrode materials. The NiZn-LDH@NiCoSe2 composites are deposited on Ni foam by a two-step strategy, in which NiZn-LDH nanosheets were firstly grown on Ni foam by hydrothermal method, and then NiCoSe2 particles were prepared by electrodeposition. Due to the synergistic effect between NiZn-LDH and NiCoSe2, excellent device performance was achieved. In a three-electrode system, the NiZn-LDH@NiCoSe2 exhibits a specific capacitance of 2980 F g−1 at 1 A g−1. Furthermore, the asymmetric supercapacitor of NiZn-LDH@NiCoSe2//activated carbon (AC) device was assembled, which exhibits the energy density of 49.2 Wh kg−1 at the power density of 160 W kg−1, with the capacity retention rate is 91% after 8000 cycles. The results indicates that NiZn-LDH@NiCoSe2 is a promising candidate as electrode materials for efficient energy storage devices.
Funder
Department of Science and Technology of Jilin Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献