Enhancing the stability of polymer nanostructures via ultrathin oxide coatings for nano-optical device applications

Author:

Wang YasiORCID,Liu Peng,Shi Huimin,Dai Yutong,Zhang Jian,Zhang Jianmin,Hu Yueqiang,Duan Huigao,Chen Yiqin

Abstract

Abstract Polymer nanostructures have drawn tremendous attention due to their wide applications in nanotechnology. However, the morphology of the polymer nanostructures is fragile under harsh conditions such as high-power irradiation and organic-solution environments during the fabrication or the measurement processes, significantly limiting their potential applications. In this work, we propose and demonstrate a simple approach to improve the stability of polymer nanostructures by coating a conformal ultrathin oxide film via atomic-layer deposition. Due to the refractory and dense coating of the oxide layer, the stability of polymer structures is enhanced by the prohibition of deformation occurrences from thermally induced reflow and organic solution. As a proof of concept, poly(methyl methacrylate) (PMMA) nanostructures coated with a sub-10-nm TiO2 layer are demonstrated, and the structures exhibit high temperature stability at 180 °C and good resistance to soluble damage from organic solutions. Subsequently, the mechanism of the improved thermal stability is analyzed via mechanical simulations. Such an effective approach is proposed to significantly broaden the application of polymer nanostructures as functional elements for optical structures/devices that require excellent thermal and chemical stability.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3