Abstract
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is well known nonselective and broad-spectrum herbicide that has been extensively used in agricultural areas around the world to increase agricultural productivity. However, the utilization of glyphosate can cause environmental contamination and health problems. Therefore, the detection of glyphosate with a fast, low-cost, and portable sensor is still important. In this work, the electrochemical sensor has been developed by modifying of working surface on the screen-printed silver electrode (SPAgE) with a mixtures solution between zinc oxide nanoparticles (ZnO-NPs) and poly(diallyldimethylammonium chloride) (PDDA) by the drop-casting process. The ZnO-NPs have been prepared based on a sparking method by using pure zinc wires. The ZnO-NPs/PDDA/SPAgE sensor shows a wide range of glyphosate detection (0 μM–5 mM). The limit of detection of ZnO-NPs/PDDA/SPAgE is 2.84 μM. The ZnO-NPs/PDDA/SPAgE sensor exhibits high selective towards glyphosate with minimal interference from other commonly used herbicides including paraquat, butachlor-propanil and glufosinate-ammonium. Furthermore, the ZnO-NPs/PDDA/SPAgE sensor demonstrates a good estimation of glyphosate concentration in real samples such as green tea, corn juice and mango juice.
Funder
Kasetsart University Research and Development Institute
Office of the Ministry of Higher Education, Science, Research and Innovation; and the Thailand Science Research and Innovation through the Ka-setsart University Reinventing University Program 2021
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献