Renewable and eco-friendly ZnO immobilized onto dead sea sponge floating materials with dual practical aspects for enhanced photocatalysis and disinfection applications

Author:

Bhatti Muhammad Ali,Almani Khalida Faryal,Shah Aqeel AhmedORCID,Tahira Aneela,Chana Iftikhar Ahmed,Aftab UmairORCID,Ibupoto Mazhar Hussain,Mirjat Abdul Nabi,Aboelmaaref Amal,Nafady AymanORCID,Vigolo BrigitteORCID,Ibupoto Zafar HussainORCID

Abstract

Abstract In this study, we have investigated the role of natural dead sea sponge (DSS, Porifera) as a three-dimensional (3D) porous host substrate for the immobilization of nanostructured ZnO material towards the development of ZnO based floating photocatalysts for efficient removal of methylene blue (MB) dye under the illumination of sunlight. After photodegradation, the treated water after dye degradation contains several pathogens, different disinfectants or chemical reagents that are essentially used. This is not the case for DSS as it can naturally kill any pathogens during the wastewater treatment process. To explore these functions, ZnO nanosheets were incorporated onto DSS via hydrothermal protocol and the as prepared ZnO/DSS hybrid material exhibited approximately ∼100% degradation efficiency for the removal of MB. Importantly, the degradation kinetics associated with the fabricated ZnO/DSS was remarkably accelerated as evidenced by the high values of degradation reaction rate constants (3.35 × 10–2 min−1). The outperformance of ZnO/DSS could be attributed to the adsorption caused by its 3D porous structure together with the high rapid oxidation of MB. Furthermore, the high charge separation of electron–hole pairs, natural porosity, and abundant catalytic sites offered by the hybrid ZnO/DSS floating photocatalyst have enabled quantitative (∼100%) degradation efficiency for MB. Finally, the excellent reusability results confirm the feasibility of using natural ZnO/DSS-based photocatalyst for practical solution of wastewater treatment and other environmental problems.

Funder

Researchers Supporting Project

King Saud University, Riyadh, Saudi Arabia

King Saud University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference66 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3