Metal-insulator crossover in monolayer MoS2

Author:

Castillo I,Sohier TORCID,Paillet M,Cakiroglu D,Consejo C,Wen C,Wasem Klein F,Zhao M-Q,Ouerghi AORCID,Contreras S,Johnson A T CharlieORCID,Verstraete M JORCID,Jouault B,Nanot SORCID

Abstract

Abstract We report on transport measurements in monolayer MoS2 devices, close to the bottom of the conduction band edge. These devices were annealed in situ before electrical measurements. This allows us to obtain good ohmic contacts at low temperatures, and to measure precisely the conductivity and mobility via four-probe measurements. The measured effective mobility up to μ eff = 180 cm2 V−1 s−1 is among the largest obtained in CVD-grown MoS2 monolayer devices. These measurements show that electronic transport is of the insulating type for σ ≤ 1.4e 2/h and n ≤ 1.7 × 1012 cm−2, and a crossover to a metallic regime is observed above those values. In the insulating regime, thermally activated transport dominates at high temperature (T > 120 K). At lower temperatures, conductivity is driven by Efros–Schklovkii variable range hopping in all measured devices, with a universal and constant hopping prefactor, that is a clear indication that hopping is not phonon-mediated. At higher carrier density, and high temperature, the conductivity is well modeled by the Boltzmann equation for a non-interacting Fermi gas, taking into account both phonon and impurity scatterings. Finally, even if this apparent metal-insulator transition can be explained by phonon-related phenomena at high temperature, the possibility of a genuine 2D MIT cannot be ruled out, as we can observe a clear power-law diverging localization length close to the transition, and a one-parameter scaling can be realized.

Funder

Agence Nationale de la Recherche

Fédération Wallonie-Bruxelles

PRACE

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3