Performance enhancement of gas sensing by modification of molybdenum selenide nanosheets with metal nanoparticles

Author:

Liu Shuai,Liu Yinggang,Li Hanxiao,Bai Yu,Xue Jiale,Xu Ruojun,Zhang Min,Chen Guoxiang

Abstract

Abstract In this paper, nanostructured molybdenum selenide (MoSe2) with composited phases are synthesized by hydrothermal method, and the products are modified by metal anoparticles to improve the gas sensing performance. Microstructure characterization shows that few layered 1T/2H-MoSe2 nanosheets have been successfully prepared. Both the morphology and component of nanosheets could be tuned by the reaction parameters. It is shown the MoSe2-based nanomaterials have excellent selectivity to nitrogen dioxide (NO2) according to gas sensing properties measurement. The sensitivity of 1T/2H-MoSe2 nanosheets modified by Cu nanoparticles is 17.73 (50 ppm NO2) at the optimal operating temperature, which is the highest compared with other samples. The sensors also exhibit rapid response/recovery time and high stability. The sensing mechanism of MoSe2 nanosheets toward NO2 is investigated based on the first-principles calculation. The results suggest the modification by metal nanoparticles could significantly improve the adsorption energy and charge transfer between gas molecule and MoSe2. This work demonstrates a promising guidance for the design of new NO2 gas sensing materials and devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Province Foreign Expert Program

the fund of the Shaanxi Key Laboratory of Surface Engineering and Remanufacturing

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3