Abstract
Abstract
Nano-sized TiO2 and ZnO are the most efficient and widely used inorganic sunscreen, but they still have some drawbacks including agglomeration, delamination, clogging pores and high cost. In this study, a kaolinite-loaded zinc oxide nanocomposite sunscreen was prepared and the key technical problems in application of inorganic nano-sized sunscreens was solved. The synthesized kaolinite-loaded zinc oxide nanocomposite was characterized by XRD, SEM, EDS, XRF and UV–vis spectrophotometry. The SEM image of the nanocomposite suggests that agglomeration of nano-ZnO is avoided by bidirectional dispersion of superfine kaolinite powder and nano-ZnO. Nano-effect and UV shielding rate are enhanced and the nanocomposite sunscreen possesses UV shielding efficiency of 1 + 1 > 2. The UV shielding rate of the nanocomposite sunscreen is greater than 99%, only 10% addition of it endows ordinary skin care products with excellent UV protective efficacy. Moreover, the content of nano-ZnO is reduced by half through introduction of kaolinite, the cost of the sunscreen is lowered, delamination and pore clogging are avoided. This work provides a technical approach for producing stronger, safer and more economical popularized anti-UV skincare products.
Funder
Sichuan Science and Technology Program
Scientific Research Fund of Sichuan Provincial Education Department
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献