Development of a model for the mass loss rate of chemical erosion in fracture intersection with the deposition hole

Author:

Chiou Jia Sheng,Wang Chung Yue,Wu Yuan Chieh

Abstract

Abstract The erosion of bentonite buffer in a fracture intersecting a deposition hole will affect the safety function. The purpose of this study was to build up a model which was to predict the rate of erosion of buffer/backfill, and this research focused on the KTH model which was developed by SKB. The KTH model consists of fluid pressure, sodium concentration, and smectite volume fraction, which is governed by Darcy’s Law and advection-diffusion equations respectively, and the mutual dependencies of these variables were considered. This model was implemented using the COMSOL Multiphysics, and the results show the different behavior of sodium concentration and smectite in various seeping water velocity, the erosion rate increases with the seeping water velocity, but the distance to the smectite rim border decreases with the water velocity. The KTH considers the relationship between sodium and smectite, and with scalability. it lays a foundation for the evaluation buffer/backfill mass loss by erosion.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3