Magnetoresistive behaviour of ternary Cu-based materials processed by high-pressure torsion

Author:

Kasalo M,Wurster S,Stückler M,Zawodzki M,Weissitsch L,Pippan R,Bachmaier A

Abstract

Abstract Severe plastic deformation using high-pressure torsion of ternary Cu-based materials (CuFeCo and CuFeNi) was used to fabricate bulk samples with a nanocrystalline microstructure. The goal was to produce materials featuring the granular giant magnetoresistance effect, requiring interfaces between ferro- and nonmagnetic materials. This magnetic effect was found for both ternary systems; adequate subsequent annealing had a positive influence. The as-deformed states, as well as microstructural changes upon thermal treatments, were studied using scanning electron microscopy and X-ray diffraction measurements. Deducing from electron microscopy, a single-phase structure was observed for all as-deformed samples, indicating the formation of a supersaturated solid solution. However, judging from the presence of the granular giant-magnetoresistive effect, small ferromagnetic particles have to be present. The highest drop in room temperature resistivity (2.45% at 1790 kA/m) was found in Cu62Fe19Ni19 after annealing for 1 h at 400 °C. Combining the results of classical microstructural studies and magnetic measurements, insights into the evolution of ferromagnetic particles are accessible.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3