Bernoulli Vacation Scheduling (BVS) Model for Energy efficient intrusion detection in WSN

Author:

Kalnoor Gauri,GowriShankar S

Abstract

Abstract Cutting-edge wireless sensor networks, security is the most important challenge that has to be considered. Most of the applications of WSN are vulnerable to attacks, as they are deployed in any kind of environment. So, the intrusion detection system is the second line of defense for WSN. The intruder should be detected in WSN more efficiently. We introduce the Bernoulli scheduling rule such that several trials are performed to get the detection of an intruder to be successful once. Since the sensor nodes are always active for detecting an intruder, the energy consumption becomes high. To reduce the consumption of energy, sleep/wakeup, also called small interval vacations are used for the sensors which are almost considered to be like the mechanism of fluid queues. In our proposed work, the vacations are introduced so that the energy used is minimized whenever the sensor is not required to be active. Thus, in our proposed work, since WSN is vulnerable to many harmful attacks, the Bernoulli scheduling rule is applied and the sensor nodes have a vacation state whenever the sensor need not be active, to save the energy consumed. The probability of detecting an intruder is calculated and performance is compared. We have applied a fluid queuing model for the vacations of small intervals in the sensor nodes to minimize the energy consumption and the obtained result is compared with the energy consumed when the vacations are not applied. Thus, the results are simulated for both energy consumed and the number of success rates of detection of an intruder, most importantly the comparison is analyzed with the past work of wsn.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3