Dye-sensitized solar cell employing chitosan-based biopolymer electrolyte

Author:

Majumdar Simantini,Mondal Archita,Mahajan Ankita,Bhattacharya Swapan Kumar,Ray Ruma

Abstract

Abstract Conductivity and transport properties of a cost-effective and environment friendly chitosan based solid biopolymer electrolytes which form mechanically robust thick film, have been reported here. A maximum ionic conductivity of ∼ 10-4 S/cm has been achieved by optimizing the concentrations of the salt (LiClO4) and the plasticizer (EC) in the biopolymer electrolyte. Ion transport properties of the biopolymer electrolytes are studied from Raman spectroscopy. A dye-sensitized solar cell (DSSC), with a sandwich structure, is fabricated with chemically synthesized ZnO (∼ 60 nm) as the nanoporous semiconductor material coated with Rose Bengal dye as a photosensitizer, the chitosan biopolymer as electrolyte and platinum as counter electrode. Linear Sweep Voltammetry analysis of the DSSCs illustrates the photovoltaic performance of these cells. Without any external addition of redox couple in the biopolymer electrolytic system, a maximum short-circuit current density of JSC = 0.556 mA/cm2 and open-circuit voltage Voc = 0.605 V with power conversion efficiency 0.051 % is achieved by the DSSC.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3