Electrical peak load forecasting using long short term memory and support vector machine

Author:

Sadli Muhammad,Fajriana ,Fuadi Wahyu,Ermatita ,Pahendra Iwan

Abstract

Abstract Electrical load forecasting is usually a univariate time series forecasting problem. In this case, we use the machine learning approach based on Long Short Term Memory and Support Vector Machine. Accurate the peak electric load forecasting. The time series or data set of the peak electric load recorded from the Substation system in Lhoksumewe, Indonesia. The main aim of this paper to predict and evaluate the performance of peak electric load at the substation for six months. The results obtained in the study, the LSTM and SVM are proving useful for peak electrical load forecasting. The resulting point both of machine learning technique based on LSTM and SVM are a possibility for analysis data for such purposes.

Publisher

IOP Publishing

Subject

General Medicine

Reference15 articles.

1. Applying Machine Learning Techniques to Short Term Load Forecasting;Thesis,2015

2. Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model for Cloud Datacenters;Kumar;Procedia Comput. Sci.,2018

3. Support vector machine based electricity price forecasting for electricity markets utilising projected assessment of system adequacy data;Sansom,2003

4. Using Support Vector Machine to Predict Next Day Electricity Load of Public Buildings with Sub-metering Devices;Fu;Procedia Eng.,2015

5. Support vector machines for short-term electrical load forecasting;Mohandes;Int. J. Energy Res.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3