Analysis SURF feature extraction and SVM classification for the facial image recognition from various angles

Author:

Rambe Aripin,Sihombing Poltak,Tulus

Abstract

Abstract Biometric is a series of procedures used to measure the physical properties of a person based on your physical characteristics of a person’s behavior in identification and verification. One facial biometrics ie, feature extraction Speed Up Robust Feature (SURF) will be suitably used for extracting the characteristics of the face image. Support Vector Machine (SVM) will be used as a method of classification. The face data used in this study were obtained from the National Cheng Kung University (NKCU). SVM classification results with the help of SURF as a model feature extraction with the determination of the number of k = 50 gained 94.60% accuracy rate, k = 500 acquire a 100% accuracy rate and the number of k = 1000 classification results decreased with 93.70% accuracy rate.

Publisher

IOP Publishing

Subject

General Medicine

Reference8 articles.

1. Face Recognition Using Pca And Svm With Surf;Sharma;International Journal of Computer Applications,2015

2. Face Recognition Using Surf Features And Svm Classifier;Anand,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3