Effect of 45S5 bioactive glass on the sintering temperature of titanium-hydroxyapatite composite

Author:

Abu Bakar D S,Kutty M G,Yahya N A

Abstract

Abstract Titanium (Ti) is widely known for its good mechanical properties and corrosion resistance. However, it has poor biocompatibility. Hydroxyapatite (HA) is a biocompatible material but has poor mechanical properties. Making Ti-HA composite creates a promising choice of biomaterial in dental and medical applications. However, creating a Ti-HA composite requires sintering at high temperatures which leads to oxidation of Ti. The aim of this study was to reduce the sintering temperature of Ti-HA composite by incorporating 45S5 Bioactive Glass (BG) without compromising the chemical, physical and mechanical properties of the composite. In this study, a Ti-HA-BG composite with wt% of 45-45-10 respectively was produced via powder metallurgy. This was compared with the control composite consisting of 50 wt% Ti- 50 wt% HA. Powders according to the above-mentioned ratio were milled at 200 rpm for 5 hours by using a planetary ball milling machine. Samples were then compacted into cylindrical pellets via uniaxial pressing at 1500 psi and sintered in an atmospheric furnace at 1000 °C, 1100 °C and 1200 °C for 4 hours. Ti-HA and Ti-HA-BG sample characteristics were examined and compared by using Fourier Transformed Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) and X-Ray Diffraction (XRD). The density and volumetric expansion of the composites were also measured and compared. Results from XRD data indicate the reduction of oxidation of Ti and decomposition of HA in Ti-HA-BG composite at lower temperature in comparison to Ti-HA composite. The density of Ti-HA-BG composites are higher compared to Ti-HA composite while the volumetric expansion of Ti-HA-BG composites is lesser than Ti-HA composite. Therefore, BG is a low melting point additive that acts as a good sintering aid to effectively lower the sintering temperature while maintaining the desired properties of initial components.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3