Re-use of wind turbine blade for construction and infrastructure applications

Author:

André A,Kullberg J,Nygren D,Mattsson C,Nedev G,Haghani R

Abstract

Abstract To achieve a more resource-efficient society with a future with reduced carbon dioxide emissions, new technological challenges must be dealt. One way to reach a more sustainable world is to start re-using end-of-life structures and waste and give them a ‘Second Life” with a new function in the society. As composite structures are lightweight, strong, stiff and durable materials, there is great potential to re-use decommissioned composite for new resource-efficient solutions in the building and infrastructure sector. The present paper investigates innovative solutions in re-using wind turbine blades as elements in new bicycle and pedestrian bridge designs. Several conceptual bridge designs where wind blades utilized as load bearing elements were developed and studied. The main design requirements for pedestrian bridges were considered and assumptions regarding wind blades quality and their mechanical properties addressed based on interviews with industries working with wind turbine blades repair and recycling. The aim of this paper is to contribute to a sustainable use of fibre reinforced polymer (FRP) waste and at the same time provide a more cost-effective FRP bridges. In a larger perspective, the authors would like to highlight the economically profitable potential of recovering and reusing / re-manufacturing end-of-life glass FRP composites.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3