Author:
Sayer F,Antoniou A,Goutianos S,Gebauer I,Branner K,Balzani C
Abstract
Abstract
In many industries, digitalization is expected to have a significant economic potential. The digitalization of wind turbine rotor blades including their materials could contribute to accelerate the development of novel and tailored materials, to improve the blades’ reliability, and to make wind energy more cost efficient. However, the digitalization of the blades through their entire life cycle is challenging e.g. due to the dependence of the material properties on the manufacturing process parameters, the complex structural health monitoring and the challenging modelling of blade response under complex loading. In the presented work based on the results of the ReliaBlade project, a theoretical approach is attempted towards describing the blade in-situ structural performance, based on the material properties, the blade manufacturing processes and loading history. In the first phase of the ReliaBlade project, an experimental blade for full-scale testing with three pre-defined internal damage modes is designed. Based on these damage modes the digitalization approach towards increasing the blade structural reliability is exemplarily shown.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献