Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir

Author:

Khasanov Kh

Abstract

Abstract Nowadays, like many other fields, Digital Elevation Models (DEM) are widely used in the field of hydrotechnical engineering. In this study, the vertical accuracy of the Shuttle Radar Topography Mission (SRTM DEM) was compared to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER DEM) for the area recommended for the construction of the Kyzylsay and Tashtepa water reservoirs in Tashkent region, Uzbekistan. Vertical differences between SRTM and ASTER products were computed the root mean squared error (RMSE) compared to GPS data. Results show that SRTM based measurements of ground control points (GCPs) exhibit RMSE of 4.262 m while ASTER DEM based measurements exhibits and RMSE of 3.693 m for the Toshtepa Reservoir located in the plain, and for the Kyzylsay reservoir located in the mountains, RMSE results show that 12.82 m for SRTM, 15.77 m for ASTER. There are SRTM DEM outperforms ASTER DEM in detecting vertical accuracy. This indicates that ASTER DEM outperforms SRTM DEM in detecting vertical accuracy for the plane, and SRTM DEM is preferable than ASTER DEM for mountainous areas. The longitudinal profiles of dams (Kyzylsay and Tashtepa) of all DEMs are compared with the geodetic data of the design institute - UzGIP. The area and volume of the reservoir were determined using the digital model were compared with the data of the design institute - UzGIP performed using a geodetic tablet.

Publisher

IOP Publishing

Subject

General Medicine

Reference38 articles.

1. Extending the applicability of viewsheds in landscape planning;Fisher;Photogrammetric Engineering and Remote Sensing,1996

2. Automated mapping of visual impacts in utility corridors;Hadrian;Landscape and Urban Planning,1988

3. SAGE Introductory Guidebook;Itami,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3