Performance of EWMA and ANN-based Schemes in Detection of Denial of Service Attack

Author:

Minn Y,Hassan A

Abstract

Abstract To ensure successful implementation of cyber-physical systems, industries require computer networks to be protected from malicious attacks. Despite various intrusion detection techniques being proposed by researchers, computer networks are still vulnerable to attacks. As new attacks becoming more complicated, more research is needed to develop more effective and reliable intrusion detection schemes. This study investigated the exponentially weighted moving average control charting technique for detection of malicious denial of service (DoS) trafic and compared it with artificial neural network (ANN) based scheme. Eight features from the Benchmark KDD Cup99 computer network datasets were extracted and their respective ARL1 and false alarm rate were evaluated. The results suggest that EWMA technique is effective only for selective features and the ANN-based scheme is relatively consistent in handling variability in traffic data. This study opens new opportunities for further investigation to enhance performance of the proposed schemes.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. Computer intrusion detection through EWMA for autocorrelated and uncorrelated data;Ye;IEEE transactions on reliability,2003

2. EWMA statistics and fuzzy logic in function of network anomaly detection;Čisar;Electronics and Energetics,2019

3. Performance analysis of different feature selection methods in intrusion detection;Aggarwal;International Journal of Scientific & Technology Research,2013

4. A novel statistical technique for intrusion detection systems;Kabir;Future Generat. Comput. Syst,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3