Synthesis of bio-hydrogen supply network via graph-theoretic approach coupled with Monte Carlo simulation model

Author:

Lo S L Y,Kong K G H,Tang M F,Sunarso J,How B S

Abstract

Abstract The shift from fossil fuels-derived hydrogen (grey or brown hydrogen) to renewable energy-derived hydrogen (green hydrogen) production is essential to achieve Sustainable Development Goal 7 (SDG7) which aims to ensure the accessibility to affordable, reliable, sustainable, and modern energy. One of the renewable energy sources that have been extensively studied is the biomass-derived energy source. The abundance of palm oil mill effluent (POME) produced annually in Malaysia, poses a unique potential of them being utilized as an alternative renewable feedstock for biohydrogen production. Therefore, this project aims to synthesize an optimal bio-hydrogen supply network via the integration of graph-theoretic approach and Monte Carlo simulation model where palm oil mills serve as hydrogen sources, while the ammonia plants serve as hydrogen sinks. Monte Carlo simulation was performed for the top three ranked bio-hydrogen supply networks extracted from the P-graph model. The uncertainties incorporated in the Monte Carlo simulation model are natural gas price and hydrogen price. Using Sarawak as the case study, it was found that the first ranked solution extracted from the P-graph model had the higher mean NPV value of USD 1,202.12 million.

Publisher

IOP Publishing

Subject

General Medicine

Reference11 articles.

1. An overview of conventional and nonconventional hydrogen production methods;Kumar;Mater. Today: Proc,2020

2. Another Record Number of Newly Opened Hydrogen Refuelling Stations,2021

3. Recent Developments on Hydrogen Production Techologies: State-of-the-Art Review with a Focus on Green-Electrolysis;Vidas;Applied Sciences,2021

4. Hydrogen supply chain network: An optimization-oriented review;Li;Renew. Sustain. Energy Rev.,2019

5. Debottlenecking of sustainability performance for integrated biomass supply chain: P-graph approach;How;J. Clean. Prod.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen generation electrolyzers: Paving the way for sustainable energy;International Journal of Hydrogen Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3