Wi-Fi based indoor localization using trilateration and fingerprinting methods

Author:

El Ashry Abd Elgwad M.,Sheta Bassem I.

Abstract

Abstract Nowadays, mobile devices such as personal computers and smartphones are emerging as a major key in today’s computing platforms for indoor object localization systems due to the object localization in indoor areas strongly suffers from limitation of using GNSS (Global navigation satellite system) systems due to low satellite availability and high signal attenuation. During the last decade, many researchers have developed indoor localization systems which are the process of obtaining user or device location through mobile devices using Wireless Fidelity (Wi-Fi) network signals with promising results and acceptable performance. In these Wi-Fi based localization systems, indoor positioning relies on different types of measurements including Time-Of-Arrival (TOA), Time-Difference-Of-Arrival (TDOA), Angle-Of-Arrival (AOA), and Received Signal Strength (RSS) of Wi-Fi signal. In this paper, the techniques and algorithms that used for the RSS-based localization such as Trilateration and Fingerprinting which depend on the RSS from the access point (WI-FI). Using Received Signal Strength Ranging approach in the Trilateration method which depends on database that contains path-loss-exponent and shadowing parameter that differ according to the environment, solving the equation using different Access Points (APs) at least 3 APs, the no of the APs and there locations were varied to get the best accuracy which depends on the horizontal dilution of position (HDOP). At the Fingerprinting method depends on matching the recorded offline RSS from nearby access points (AP) to the online RSS received by the user on the move is reviewed. A comparison of location fingerprinting methods involving deterministic method (k-nearest neighbor method and weighted k-nearest neighbor method), probabilistic methods by estimation of likelihood functions with several approaches (non-parametric and parametric)are also explained. The performance parameters of this study include the two-dimensional root mean square error (2D-rms) which measures the localization accuracy. Moreover, the effect of increasing/decreasing the number of APs on the system accuracy is also discussed. The aim of this paper is to announce which method can provide better performance than the others and under what conditions.

Publisher

IOP Publishing

Subject

General Medicine

Reference23 articles.

1. Survey of wireless indoor positioning techniques and systems;Liu;IEEE Trans. Syst. Man Cybern. C: Applications and Reviews

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3