The analysis of the dimple arrangement of the artificial hip joint to the performance of lubrication

Author:

Basri Hasan,Syahrom A,Ramadhoni T S,Prakoso A T,Ammarullah M. I.,Vincent

Abstract

Abstract Artificial hip joint surgery is one of the most successful methods used to restore the functioning of damaged hip bones. But there are obstacles to the use of artificial hip bone, which is the amount of friction occurring and wears. To overcome these obstacles, a surface of the artificial hip joint is modified by adding dimples in order to minimize the contact pressure of solid and to reduce friction and wear. The purpose of this study is to determine a better of lubrication performance with the variations of the dimple arrangements under the normal walking condition. Simulation results have already exited the point of convergence studies, and the obtained results are such as hydrodynamic pressure, contact pressure, and the film thickness of the lubricant with the variations of the number and pitch dimples. The results of the CSM method under dry condition, it shows that the addition of surface with dimples has a positive effect to reduce the contact pressure and indirectly reduce wear. The maximum surface contact pressure is 54.84 MPa with dimple and 94.22 MPa without a dimple. The results of the FSI method under lubrication condition, it was found that the variation of 7 dimples with a dimple pitch of 500 μm has the best lubrication performance. The hydrodynamic pressure is 0.73 Pa, the contact pressure is 0.42 Pa, and the film thickness of the lubricant is 29.59 μm. The increase of film thickness that occurs due to hydrodynamic pressure will cause the fluid lift force to withstand the loading of the solid structure.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3