Analytical computation of stress intensity factor for multi-physics problems

Author:

Pistorio Francesca,Clerici Davide

Abstract

Abstract This work presents a methodology for the analytical calculation of the stress intensity factor when the stress distribution on the crack surfaces is non-homogeneous. At first, a polynomial function is used to express the non-homogenous stress distribution. Subsequently, the principle of superposition of effects is applied, and the stress intensity factor is computed by multiplying each polynomial term by its respective geometric factor. Finite element fracture model is used to compute the geometric factor of the single polynomial grade. To explain the method, a spherical body is considered, with central and superficial cracks. Each geometric factor depends on a normalized geometrical parameter (the ratio between the crack length and sphere radius). The proposed methodology is applied to determine the stress intensity factor in the case of a crack driving force caused by diffusive fields, such as the concentration gradient in particles of electrodes active material in lithium-ion batteries. The methodology allows to speed up the fracture computation, then it is used to give electrode design guidelines to limit the fracture likeliness and mechanical degradation in lithium-ion batteries, as well as it is the basis for the development of algorithms assessing the capacity loss and the remaining useful life of lithium-ion batteries in real-time.

Publisher

IOP Publishing

Reference47 articles.

1. An improved semi-analytical solution for stress at round-tip notches;Liu;Engineering fracture mechanics,2015

2. Study of notched mems specimen: elasto-plastic modeling and experimental testing;Aurelio;Journal of Micromechanics and Microengineering,2022

3. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate;Irwin;Journal of Applied Mechanics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3