Multimethodology based on Design-to-Value (DtV), integrated with simulation techniques and prioritization of teamwork for the optimization of a pneumatic rack & pinion actuator

Author:

Maiocchi G,Vigliano L,Nicoletto G

Abstract

Abstract The investigations here presented focus on the redesign and innovation of a pneumatic rack and pinion actuator for valve actuation, as a case study for investigating the potential of a multimethodology based on the Design to Value (DtoV) process, coupled with design techniques utilizing FEA simulations and giving high priority to teamwork. The final objective of this case study is to show how it is possible to optimize the design, increasing weight efficiency while maintaining performance, and to simplify it, with a reduction of components construction complexity, according to the growing demand for a lean production. The principle that guided all the activities was valorizing the power of teamwork, focusing the team on Safety and Reliability. In an initial phase, all the instruments foreseen by “Design-to-Value” process have been applied, obtaining a classification of the contents of the product constituting its sources of value. Subsequent outputs are proposals for efficient construction solutions, driving a second phase, dedicated to the re-design of the actuator. The peculiarity of this project has been to combine the “Design by Formulas” techniques with advanced FEA simulations (“Design by Analysis”), aiming to stress, deformation, and topology optimization. A two-step experimental validation is used, based on a preliminary “mockup” prototype followed by a complete detailed prototype, for confirming the results of the calculations and simulations, by directly performing a series of in-depth tests. Preliminary obtained results show that the approach based on the described multimethodology, makes it possible to optimize the design of the actuator, maintaining safety, reliability, and performance. In the case studied, the weight reduction is expected to be 8% and economic efficiency increase is expected to be near 20%.

Publisher

IOP Publishing

Reference16 articles.

1. Design to Value: a smart asset for smart products;Henrich,2012

2. Achieving Success through Value Engineering: A Case Study;Sharma;Proc. of the World Congress on Engineering and Computer Science 2012,2021

3. Innovate by Designing for Value - Towards a Design-to-Value Methodology in Early Design Stages;Ben Hamida,2017

4. A case study analysis through the implementation of value engineering;Sharma;International J. of Engineering Science and Technology,2011

5. Topology Design and Modal Analysis of a Bracket via FEA;Gülbahçe;Applied Engineering Letters: J. of Engineering and Applied Sciences.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3