Latest developments in AWAS: the Advanced Weather Awareness System in the COAST Project

Author:

Montesarchio M,Zollo A L,Ferrucci M,Bucchignani E

Abstract

Abstract In the framework of the COAST (Cost Optimized Avionics SysTem) project funded by Clean Sky 2 Joint Undertaking in the European Union’s Horizon 2020 Research and Innovation Programme, several key technologies are under development, aimed to enable single pilot operations of Small Air Transport (SAT) vehicles. One of these technologies is AWAS (Advanced Weather Awareness System), which aims to provide and visualize on board of the aircraft updated weather information regarding areas affected by weather hazards, in order to increase the weather awareness of the pilot. The system is composed by three main components: AWAS on-ground, devoted to generate and provide on board data regarding weather hazards observed and forecast along the flight route; AWAS on-board, aimed to send on-ground information concerning aircraft position and current time and to elaborate data provided by AWAS on-ground; AWAS Human Machine Interface (HMI), that visualize data on-board over a Portable Electronic Device (PED). AWAS on-ground and AWAS on-board segments are connected each other via a low-cost satellite communication system. The meteorological information is extracted from MATISSE (Meteorological AviaTIon Supporting System), a prototype software developed by the Meteorology Laboratory of CIRA. This paper describes the main functionalities and components of the system under development, highlighting the advancements achieved with respect to the one presented in 2020, and the work performed to allow the on-board integration of AWAS system. Furthermore, the paper reports the main results obtained during the dedicated flight test campaign successfully completed in summer 2021, validating the technology when integrated into the aircraft.

Publisher

IOP Publishing

Subject

General Medicine

Reference17 articles.

1. Flight management enabling technologies for single pilot operations in Small Air Transport vehicles in the COAST project;Di Vito;IOP Conf. Ser.: Mater. Sci. Eng.,2021

2. Compact Computing Platform for Future General Aviation in the COAST Project;Zaykov;IOP Conf. Ser.: Mater. Sci. Eng.,2021

3. Advanced Weather Awareness System for Small Air Transport vehicles: design advancements in the COAST project;Montesarchio;IOP Conf. Ser.: Mater. Sci. Eng.,2021

4. MATISSE: an ArcGIS tool for monitoring and nowcasting meteorological hazards;Rillo;Adv. Sci. Res.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3