Optimal sizing of hybrid electric propulsion system for eVTOL

Author:

Marzougui Taher,Neuhaus Kolja,Labracherie Laurent,Scalabrin Gianmarco

Abstract

Abstract Electric propulsion unmanned aerial vehicles (UAVs) attract much attention in aviation industry, with electric vertical take-off and landing (eVTOL) aircraft tending to gain ground. The current development of hybrid eVTOL aircraft intended for urban air mobility is facing many technical challenges. Among these challenges rises the optimal sizing of its hybrid power system (HPS). The latter requires an energy management strategy (EMS). In this paper, the adopted management strategy is based on filtering techniques using frequency-separation. The EMS ensures the optimal distribution of the load power requirement between the different sources while considering their limits. In addition, the optimal sizing allows to strengthen the complementarity between sources and to indirectly reduce their mass. In this work, the studied HPS consists of a fuel cell associated with an energy storage system (ESS), composed of lithium polymer batteries (Li-Po) and supercapacitors. The onboard sources are connected in parallel on the power bus through three DC-DC converters. The results of this study are presented and discussed to highlight the relevance of the proposed approach.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Multiple UAVs trajectory generation and waypoint assignment in urban environment based on DOP maps;Causa;Aerospace Science and Technology,2021

2. Pollution haven or halo? The role of the energy transition in the impact of FDI on SO2 emissions;Xu;Science of the Total Environment,2021

3. Rapid control prototyping and PIL co-simulation of a quadrotor UAV based on NI myRIO-1900 board;Bouallègue;International Journal of Advanced Computer Science and Applications(IJACSA),2016

4. The use of UAV’s for search and rescue operations;Polka;Procedia engineering,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3