Airfoil Shape Optimization: Comparative Study of Meta-heuristic Algorithms, Airfoil Parameterization Methods and Reynolds Number Impact

Author:

Hoyos JoséD,Jímenez Jesús H,Echavarría Camilo,Alvarado Juan P

Abstract

Abstract The aerodynamic efficiency in airfoil theory is defined as the ratio between the lift and drag force, which is the main objective function to be maximized in a wide kind of vehicle design due to its strong relationship between fuel consumption and range. This work employs the 4-digits NACA parameterization, a recently developed 6-parameters method, and the PARSEC technique with a correction of the matrices available in the literature, to compare the computational cost and the ability to achieved higher efficiency of these parameterizations. A genetic algorithm and particle swarm optimization routines are developed and implemented in Matlab, also a sine-cosine algorithm is tested, where Xfoil and the open-source computational fluid dynamic software OpenFOAM are coupled with the optimization algorithms. Finally, a Reynolds number impact study is performed related to the airfoil shape and the angle of attack which maximizes the aerodynamic efficiency. The results showed a faster convergence for the particle swarm optimization and the highest aerodynamic efficiency achieved by the 6-parameter method. Furthermore, with a higher Reynolds number, a higher angle of attack for the optimum lift-to-drag ratio as well a less camber is obtained.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3