Development of a surface cryogenic propellant transfer concept for Martian operations

Author:

Congiardo J,Krenn A,Martinez J,Dupuis M,Swanger A

Abstract

Abstract NASA is currently evaluating architectures to support human missions to Mars. A multitude of concepts are being traded and associated sensitivities are being analyzed. Mars Ascent Vehicle (MAV) propellant supply is a key consideration. Mass constraints for the Mars descent system and in-space transportation present significant architectural challenges that may preclude landing a fully fueled MAV for crew use. In such a case, to ensure the ability of the crewed mission to meet its objectives, propellant should be supplied to the MAV prior to the arrival of the crewed mission from Earth. A concept to robotically transfer liquid oxygen from a separate storage tanker across the surface to the MAV is proposed. This concept makes use of an unpressurized rover and is optimized to maximize the amount of propellant conveyed per trip.

Publisher

IOP Publishing

Subject

General Medicine

Reference3 articles.

1. Architectural Impacts of In- Situ Resource Utilization Production of Oxygen for Use as Propellant in a Mars Ascent Vehicle;Krenn,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3