Forming of large scale bipolar plates for high power fuel cell stacks

Author:

Ma Xiaolong,Zhang Xianglu,Guo Nan,Qin Li,Xiao Yao,Yang Daijun,Min Junying,Ming Pingwen,Zhang Cunman

Abstract

Abstract Developing high-power (e.g. megawatt-scale) single fuel cell stacks is of significance to extending the application of hydrogen fuel cells in high-energy-consumption fields such as aerospace, maritime, and rail transportation. Bipolar plate is one of the core components of hydrogen fuel cell stacks. Currently, the mainstream hydrogen fuel cell stacks achieve a maximum power of about 200 kW with a bipolar plate area of approximately 600 cm2. While the megawatt-scale hydrogen fuel cell stacks requires large scale bipolar plates with an area of e.g. >2000 cm2 and higher geometric complexity of flow channel. However, the structural design and manufacturing process for such large scale bipolar plates remain unexplored. Based on the concept of “partitioned modular manufacturing”, the large scale bipolar plate is divided into multiple smaller scale bipolar plate modules in this work, and then integrated into a single component, which is then formed by applying multi-step stamping process to each module. Therefore, a so-called “partitioned multi-step stamping process” is proposed to form large scale bipolar plates with fine flow channels. Experimental validation was conducted using 0.1 mm thick titanium sheets and austenitic stainless steel sheets, demonstrating a prospective solution to manufacture large scale bipolar plates for high power hydrogen fuel cell stacks.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3