Design of a non-destructive test for validating models of hydrogen migration

Author:

Beghini M,Bertini L,Macoretta G,Monelli B D,Valentini R

Abstract

Abstract High-strength steels, despite their excellent mechanical properties in normal conditions, can be susceptible to hydrogen embrittlement. Due to the service loads or residual stresses, hydrogen migrates within the component and accumulates in the regions where the highest tensile hydrostatic stress occurs. As a consequence, component brittle failure can occur even if the initial or mean hydrogen concentration is lower than the critical value. The availability of models predicting the hydrogen diffusion within the component is a crucial task for the design. Several diffusive models have been presented in the literature and some general-purpose finite element codes have already implemented some of them. However, the validation of those models is still an open issue due to the difficulty in performing accurate local measurements of the hydrogen concentration. This study deals with the design of a test potentially able to validate hydrogen migration models. In the test, a four-point bending configuration is applied to a properly shaped hourglass specimen, previously charged with hydrogen, extracted from thin high-strength steel sheets. The specimen geometry and the loading configuration were designed to obtain a central region in which the stress and strain field is uniform in plane and exhibits a quasi-uniform gradient in the thickness direction. As a consequence, it is expected a large enough central region of the specimen in which the Hydrogen can migrate only in the thickness direction during the typical duration of the test. The local hydrogen concentration is evaluated by measuring the flux leaving the tensile surface of the specimen by a solid-state hydrogen sensor.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3