Amplification of laser diode-induced photoacoustic signals for non-destructive testing of mechanical components

Author:

Gulino Michelangelo-Santo,Banelli Luca,Vangi Dario

Abstract

Abstract The present work highlights that the laser diode, acting as an ultrasonic source by photoacoustic effect, can be successfully employed for defect detection in mechanical components; the performed investigation specifically involves a railway axle with cracks on the body and fillets, respectively 13 mm-deep and 2 mm-deep. To ease the inspection process, a methodology for amplification of the ultrasound is introduced which is based on the appropriate choice of the TTL signal modulating the diode; amplification is achieved by constructive interference between two ultrasonic signals: the first is induced by the dilation resulting from the laser ignition, the second conversely derives from the contraction obtained when the laser is powered off. The proposed amplification methodology allows ultrasonic energy to be focused in a narrow range of frequencies, promoting the use of traditional detection devices like narrowband probes. The developed inspection system, which takes advantage of a 20 W source, enables the identification of the ultrasonic pattern and defect detection regardless of the application of post-processing techniques on the acquired signals: allowing for excitation of high-amplitude ultrasound without directly contacting the component, the laser diode represents a suitable source for the non-destructive inspection of the axle while it rotates (i.e., during operation). Thanks to the cost reduction achieved in comparison with the use of more traditional pulsed lasers, the diode lends itself to large-scale application in the field of non-destructive testing on mechanical structures.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3