Development of test rig for optical diagnostics of cryogenic spray

Author:

Patil Bhushan R,Twarog Kyle,Mannaa Ossama,Sung Chih-Jen

Abstract

Abstract Spray cooling is the primary method for conducting chilldown and fill of cryogenic propellant tanks. In a typical spray injection process, a liquid sheet/jet that exits the spray nozzle undergoes primary breakup by the development of surface instabilities. Droplets and ligaments generated after the primary breakup undergo secondary breakup to create a dispersion of droplets, which extract heat on impact with the tank walls. In the existing literature, there is limited data on the primary breakup of cryogenic sprays and their detailed visualization. Moreover, an insight into the spray characteristics such as primary breakup length and cone angle is vital to the development of computational models. In this investigation, optical diagnostics of cryogenic spray breakup and measurements of cryogenic spray characteristics have been conducted. Liquid nitrogen is the selected cryogen for the present analysis. To capture the transient nature of spray breakup after the injection, a novel shadowgraph technique is developed to photographically freeze the spray motion. Cryogenic spray characteristics such as cone angle and primary breakup length are obtained from the shadowgraph. In addition, droplet velocity measurement using Particle Image Velocimetry is explored. The comprehensive experimental dataset obtained herein not only provides insights into the mechanism of spray formation for cryogenic fluids but also helps in designing of spray cooling system for tank chilldown.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3