Study on PV Thermal Integrated systems for Rooftop Applications

Author:

Mohan Harsh,Manoj Reddy G,Gopal Vinod Kumar,Hariprasad M P

Abstract

Abstract Around 90% of the total solar wafers produced and deployed around the globe is primarily based either on mono or polycrystalline silicon cells. Majority of these are deployed for converting incoming insolation directly to electrical energy and are termed as photovoltaic systems (PV). Another application is to convert the incoming solar energy into thermal energy and termed as Thermal systems (T). The vital components for both the above conversions are their respective solar energy collection systems. As the temperature rises, the conversion efficiency of solar cells decreases. This is due to the fact that with increase in temperature, there will be a reduction in the mobility of charge carriers. When deployed in field, photovoltaic cells will heat up rapidly as they are good heat absorbers. In storage integrated solar installations, heat is considered as killer of all batteries and encapsulate. The work aims at design and development of an integrated PV thermal solar system to efficiently utilise the incoming solar energy. An efficient heat exchanger mechanism will help bringing in possibility of having a storage integrated solar module so that the final solution will have generation, storage and thermal evacuation in the same laminate. The integrated model when implemented gives enough room and a lower temperature chamber, where the batteries could be easily integrated without loss of cycle life and AH capacity loss.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Improved PV/T solar collectors with heat extraction by forced or natural air circulation;Tonui;Renew Energy

2. Combined photovoltaic and thermal hybrid collector systems;Kern

3. Evaluation of combined photovoltaic/thermal collectors;Hendrie,1979

4. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors;Sol Energy

5. The yield of different combined PV-thermal collector designs;Sol Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3