Non-destructive Testing of Wooden Elements

Author:

Zielińska Monika,Rucka Magdalena

Abstract

Abstract Examining the condition of wooden elements is crucial from the perspective of proper structure performance. If the deterioration in the internal wood condition, which displays no symptoms visible from the outside, is detected, the further spread of the deterioration can be prevented. Test results often point to the necessity of conducting repairs and, renovations, replacing the structure of wooden beams, or even substituting a significant part of the structure. To achieve acceptable results, test methods should take into account the anisotropic nature of wood, which includes the shape of annual rings, as well as the location of the core in crosssection. To adopt methods based on physical effects, profound knowledge of wood physics is needed, particularly of interdependence. Apart from simple tests such as a visual inspection or tapping that are used to determine near-surface defects, non-destructive testing (NDT) plays an important role in the process. This paper presents the methods of non-destructive testing of wooden elements. These methods include tests conducted with ground penetrating radar (GPR), thermal techniques, microwaves, acoustic emission, ultrasonic tomography, and X-ray tomography. The paper summarises the use of non-destructive methods, indicating their advantages, disadvantages as well as some limitations.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Non-destructive testing of wood and wood-based materials;Niemza;Journal of Cultural Heritage,2012

2. Structural health monitoring of timber structures – Review of available methods and case studies;Palma;Construction and Building Materials,2020

3. Experimental and numerical investigations for GPR evaluation of reinforced concrete footbridge;Jacek,2016

4. Integrated Application of GPR and Ultrasonic Testing in the Diagnostics of a Historical Floor;Rucka;Materials,2020

5. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics;Rucka;Mesurement,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3